A Vision for the Future of Cancer Care

Collaboration between different medical specialties and appropriate use of new tools like AI will drive progress in the fight against cancer, a celebrated oncologist and best-selling author told the audience in Arie Crown Theater Monday.

Langlotz Named RSNA Chair

Curtis P. Langlotz, MD, PhD, was named chair of the RSNA Board of Directors. A renowned imaging informatics leader and committed advocate for improved clinical communication, Dr. Langlotz is professor of radiology, medicine and biomedical data science, director of the Center for Artificial Intelligence in Medicine and Imaging, and associate chair for information systems in the Department of Radiology at Stanford University. As a medical informatics director for Stanford Health Care, he sets strategy for the computer technology that supports the Stanford Radiology practice.

In an almost hour-long address, Siddhartha Mukherjee, MD, assistant professor of medicine at Columbia University Medical Center, offered the large crowd a vision for the future of cancer care.

He echoed the thoughts of leading experts when he suggested that AI is best viewed not as a threat to radiology but a useful adjunct. Referencing the number of AI-derived cancer detection products in the exhibition hall upstairs, he shared research on AI’s ability to improve breast cancer detection. Quality data is central to developing these algorithms, Dr. Mukherjee said, something that radiologists have helped provide.

“I want to particularly congratulate the radiology community for open sourcing hundreds of thousands of images so that they can be processed by the community at

CONTINUED ON PAGE 10

INSIDE TUESDAY

- Support the R&E Foundation on Giving Tuesday
- Join the global generosity movement and support radiology research.

- Impact of Holistic Recruitment on Female Radiology Residents
- New research shows an emphasis on diversity during recruitment can increase female residents.

- How AI Affect Clinical Neuroimaging
- Researchers explore how machine learning in neuroimaging can impact clinical practice.

- Disparities In Cancer Imaging Trends During the COVID-19 Pandemic and Recovery
- Research identified the groups most affected by delays in cancer imaging during COVID-19.

- Celebrating at RSNA 2022
- RSNA 2022 recognizes outstanding achievements and members learn while having fun.

- RSNA Recognizes Honorees
- Recognizing significant achievements in radiology.

- Radiologists at the Center of Diagnosing and Treating Pregnancy-Associated Cancer
- Although rare, the prevalence of pregnancy-associated cancer (PAC) is rising.

- AI Can Help Researchers Tap Into Decades Of EMRs
- The use of natural language processing algorithms can help collect and process data for clinical research.

- Radiologists Using AI with MRI for Prostate Cancer Detection
- Using AI helps improve diagnostic accuracy and reduce workload for prostate cancer detection and diagnosis in MRI.

- Improving Teamwork By Partaking in Formal Leadership Training
- Formal leadership training can help prevent burnout.

EXCLUSIVE ONLINE CONTENT

- High Deductible Leads Women to Skip Testing after Abnormal Mammogram
- Study shows one in five women is likely to forgo additional testing after an abnormal screening mammogram if there is a deductible.

- Steroid Injections Worsen Knee Arthritis
- Two studies comparing injections for knee osteoarthritis found that corticosteroid injections were associated with the progression of the disease.
The next generation GBCA from Guerbet is here

To learn more, scan QR code or visit www.guerbet-us.com

RSNA 2022
VISIT US AT BOOTH #1711
Tuesday At a Glance

Plenary Lecture
11 a.m. – Noon | Arie Crown
Designing Radiology for Patients, Communities & the Planet
Dr. Omary will discuss the responsibility of today’s radiology professionals to create the best possible experience for patients, communities and beyond.

Support the R&E Foundation on Giving Tuesday
The RSNA R&E Foundation is participating in #GivingTuesday, a day of generosity celebrated around the world.

Celebrating the radiologic community on #GivingTuesday by making a donation to the R&E Foundation at RSNA.org/Donate or by visiting the R&E Foundation Booth in the Connections Center. Stop by the RSNA Shop and pick up an R&E beverage tumbler as a souvenir that will also support the Foundation.

Your donations fund the future of radiology by supporting advances in research and innovative teaching methods. In 2022, the Foundation directed more than $4 million in funding to individuals at 46 institutions, and since the Foundation’s inception, over 1,600 R&E grants have been awarded.

Please contribute to the Foundation today and share your support across social media with the #GivingTuesday and #RNSA22 hashtags.

Tuesday Press Releases
Press releases are distributed to the media throughout the week highlighting research presented at RSNA 2022. RSNA’s media outreach helps increase public awareness of radiology and its role in personal health care. Attend these sessions today or access them at Meeting.RSNA.org.

High Deductible Leads Women to Skip Testing after Abnormal Mammogram
Over 21% of women would forgo additional testing after an abnormal mammogram if they had to pay a deductible, according to a new study. Researchers also found that 18% of women would skip their screening mammogram if required to pay out of pocket. The demographic groups with the highest percentage of responses indicating they would skip additional imaging were Hispanic, high school educated or less, household income less than $35,000 and Medicaid/uninsured.

“Effect of a High Deductible Health Plan on Patients Willingness to Undergo Indicated Breast Imaging” (T7-SSBR06-3)

Steroid Injections Worsen Knee Arthritis
Two studies comparing injections commonly used to relieve knee osteoarthritis pain found that corticosteroid injections were associated with disease progression. In the first study, researchers directly compared 210 patients who received corticosteroid or hyaluronic acid injections to a control group of 140 who did not. Statistical analysis showed that corticosteroid knee injections were significantly associated with the overall progression of osteoarthritis in 100 patients who received injections of corticosteroids and hyaluronic acid compared to a control group of 140 who did not. Researchers also found that patients injected with corticosteroids had significantly more osteoarthritis progression.

“Impact of Intra-Articular Knee Injections on the Progression of Knee Osteoarthritis: Data from the Osteoarthritis Initiative (OAI) Cohort” (T1-SSMK05-04)

“Medial Joint Space Narrowing and Kellgren-Lawrence Progression following Intraarticular Corticosteroid Injections compared to Hyaluronic Acid Injections and Untreated Patients” (T1-SSMK05-04)

AI Predicts Heart Disease Risk Using Single X-Ray
Researchers have developed a deep learning model that uses a single chest X-ray to predict the 10-year risk of death from a heart attack or stroke, stemming from atherosclerotic cardiovascular disease. Researchers trained the deep learning model and developed it to predict the risk of cardiovascular disease death. There was a significant association between the risk predicted by the CXR-CVD risk deep learning model and observed major cardiac events.

“Deep Learning to Predict 10-year Cardiovascular Risk from Chest Radiographs” (T3-SSC104-1)
Holistic Recruitment Process Boosts Numbers of Female Radiology Residents

Standardization of radiology residency recruitment processes with an emphasis on diversity in faculty participation and a holistic application review was associated with increased proportions of matched female residents, according to research presented Monday.

Female radiology residents are persistently under-represented in U.S. radiology residency programs, despite parity in medical school admissions. Standardized recruitment processes have been described as a tool to reduce biases and increase diversity in admissions processes.

Mai A. Elezaby, MD, associate professor in the Department of Radiology at the University of Wisconsin School of Medicine and Public Health in Madison, and colleagues developed a standardized holistic recruitment process and evaluated its impact on the matching of female radiology residents into an academic diagnostic radiology residency program.

The standardized process was devised and implemented in the summer of 2020 to increase residency program diversity. The plan included implementation of a holistic application review process, standardized behavioral interview questions and a more diverse faculty selection committee.

“We updated our recruitment goals and values, and we used those updated metrics to mirror our metrics for scoring our applicants,” Dr. Elezaby said. “We also built a more diverse search committee with representation from the entire department.”

With the new process in place, the researchers collected and compared recruitment process data pre- and post-implementation.

New Protocol Leads to More Interviews for Women

A total of four years of recruiting data were included. There were no statistically significant differences in the percentage of female applicants before and after implementation of the recruitment process. However, the proportion of female applicants interviewed after the implementation climbed from 26.7% to 44%. Before implementation of the standardized recruitment process, two out of 16 matched applicants (12.5%) were female. Post-implementation, eight out of 16 matched applicants (50%) were female, a statistically significant increase.

“Standardization of our radiology residency recruitment processes focused on increasing the visibility of female faculty and a holistic application review was associated with a statistically significant increase in female matching applicants,” Dr. Elezaby said.

Among the measures implemented, Dr. Elezaby credited conducting virtual interviews with helping to expand the number of female applicants. “Virtual interviews have really helped us in improving the interview cycle,” she said. “They allow us to increase the participation of residents and faculty members from diverse backgrounds.”

While the study results are encouraging, Dr. Elezaby emphasized that boosting female representation in radiology will require much more work. “Continued efforts to promote earlier exposure to radiology in medical school are still needed to increase the pipeline of female applicants to radiology programs,” she said.

Continued Integration of New Technology to Fuel Future of Neuroimaging

As AI in medical imaging continues to advance, opportunities for machine learning applications continue to expand across the spectrum of neurological disease imaging.

“Machine learning is a broad field that has many potentially powerful methods and techniques,” said moderator Yvonne Liu, MD, professor and vice chair of research in the Department of Radiology at NYU Langone Health, Grossman School of Medicine in New York.

In a Monday education session, three presentations centered on current and future considerations for AI in clinical neuroimaging.

Making the Call for More, Better Automation

Opening the discussion, Christopher Filippi, MD, chair of the Department of Radiology at Tufts University School of Medicine in Medford, MA, shared several studies demonstrating applications of AI in glioma diagnosis, treatment and follow-up. He noted that deep learning use in the field of glioma is exploding, but more can be done to improve AI tools for radiologists.

Making an appeal to vendors and AI developers, Dr. Filippi said segmentation tools that automatically extract imaging features and provide tumor classification and other useful information would be most helpful. “This could easily be incorporated into a PACS environment and should be done in a way that’s automated,” he said.

Dr. Filippi called on radiologists to be better at data sharing and working with PACS providers to develop tools that can be made universally available. He emphasized the importance of focusing on clinical efficacy when using AI models. Looking ahead, he said work should be done to push automated PACS forward and increase collaboration between imaging groups to remove siloes.

Metrics for efficacy must be determined and arranged. “It’s all about process, and we still have a lot of work to do,” Dr. Filippi said.

Defining Measures of Success in AI

How do we define the correct measures of success in using AI in clinical practice? In his session, Daniel Chow, MD, MBA, vice chair of innovation and entrepreneurship at University of California, Irvine (UCI), and chief of neuroradiology and co-director at the UCI Center for AI in Diagnostic Imaging, questioned whether success should be measured on a given tool’s sensitivity and specificity or on its clinical benefit.

“A lot of the work right now has really been centered on diagnostic and technical efficacy but there’s been a relative lack of effort in trying to figure out if it’s actually improving patient outcomes,” Dr. Chow said.

Continued Integration of New Technology to Fuel Future of Neuroimaging

By Lynn Antonopoulos

As AI in medical imaging continues to advance, opportunities for machine learning applications continue to expand across the spectrum of neurological disease imaging.

“Machine learning is a broad field that has many potentially powerful methods and techniques,” said moderator Yvonne Liu, MD, professor and vice chair of research in the Department of Radiology at NYU Langone Health, Grossman School of Medicine in New York.

In a Monday education session, three presentations centered on current and future considerations for AI in clinical neuroimaging.

Making the Call for More, Better Automation

Opening the discussion, Christopher Filippi, MD, chair of the Department of Radiology at Tufts University School of Medicine in Medford, MA, shared several studies demonstrating applications of AI in glioma diagnosis, treatment and follow-up. He noted that deep learning use in the field of glioma is exploding, but more can be done to improve AI tools for radiologists.

Making an appeal to vendors and AI developers, Dr. Filippi said segmentation tools that automatically extract imaging features and provide tumor classification and other useful information would be most helpful. “This could easily be incorporated into a PACS environment and should be done in a way that’s automated,” he said.

Dr. Filippi called on radiologists to be better at data sharing and working with PACS providers to develop tools that can be made universally available. He emphasized the importance of focusing on clinical efficacy when using AI models. Looking ahead, he said work should be done to push automated PACS forward and increase collaboration between imaging groups to remove siloes.

Metrics for efficacy must be determined and arranged. “It’s all about process, and we still have a lot of work to do,” Dr. Filippi said.

Defining Measures of Success in AI

How do we define the correct measures of success in using AI in clinical practice? In his session, Daniel Chow, MD, MBA, vice chair of innovation and entrepreneurship at University of California, Irvine (UCI), and chief of neuroradiology and co-director at the UCI Center for AI in Diagnostic Imaging, questioned whether success should be measured on a given tool’s sensitivity and specificity or on its clinical benefit.

“A lot of the work right now has really been centered on diagnostic and technical efficacy but there’s been a relative lack of effort in trying to figure out if it’s actually improving patient outcomes,” Dr. Chow said.

Physicists Quiz

Physics Quiz

Without person-specific training dictation software often performs better for native English speaking men than women and those with strong accents. This is:

a. Historical Bias
b. Sample/Selection Bias
c. Group/Aggregation Bias

[Answer on page 5.]
Disparities in Cancer Imaging Trends During the COVID-19 Pandemic and Recovery

By Mary Henderson

Research from four hospitals in Massachusetts identified the groups most affected by delays in cancer imaging during COVID-19.

Ottavia Zattra, MD, researcher in the MESH Incubator at Mass General Brigham, presented new data exploring these socio-economic disparities in cancer imaging utilization during a Monday morning session.

“During the pandemic, medical institutions reduced non-essential specialty health care services to curb COVID-19 transmissions,” said Dr. Zattra, a resident physician at the Hospital of the University of Pennsylvania, Philadelphia. “Cancer care delivery was severely impacted, with declines in cancer-related visits, chemotherapy sessions, surgeries and cancer screenings.”

Previously published research has demonstrated that cancer imaging utilization declined significantly from March through May of 2020.

“Our objective was to look at the differential trends based on socio-economic and demographic factors,” she said.

Study Looked At Four Different Time Periods During the Pandemic

In the study, Dr. Zattra and colleagues retrospectively analyzed cancer imaging utilization among patients by age, race, language and insurance type at Massachusetts General Hospital (Mass Gen) and three affiliated community hospitals during four time periods between January 2020 and October 2021:

• Pre-COVID, January 2020 – March 2020
• COVID peak, March 2020 – May 2020
• Post-COVID peak, May 2020 – November 2020
• Post-Vaccination period, December 2020 – October 2021

Patients were categorized by age (18 – 64 and 65+); race (white or non-white), language (English or Non-English speaking), and insurance type (private insurance, Medicare or Medicaid).

Overall, cancer-related CT volumes declined an average of 42.2% during the COVID peak period compared to the pre-COVID baseline. CT volumes returned to the pre-COVID baseline during the post-peak period and increased an average of 11.1% above pre-COVID baseline during the post-vaccination period.

“The overall trends we observed in our study weren’t surprising as they mirrored previously published research,” she said. “The increase in cancer-related imaging utilization during the post-peak and post-vaccination periods could reflect both a return to full access to care as well as an increase in cancer incidence.”

Disparities Noted in Certain Groups

However, the analysis of cancer-related CTs performed per person revealed disparities across race, language, and insurance categories. Patients who were white, English-speaking, or who had private insurance or Medicare experienced an increase in the number of CTs performed per person (CTs/person) across all time periods.

“This was not the case for non-white, non-English speaking, and Medicaid patients, which is very concerning,” she said. The number of CTs/person remained the same as the pre-COVID baseline for non-white, non-English speaking and Medicaid patients across all the study periods.

“The increase in CTs/person experienced by the white, English-speaking, and private insurance/Medicare patients may indicate that these patients were sicker when presenting for care,” she said. “It also could reflect system or provider bias in favor of these patients or a lack of resources to connect non-white, non-English and Medicaid patients to care.”

In response to the results, the study’s senior author, Marc Succi, MD, said Mass General has created outreach and language translation initiatives to mend the disparities in cancer-related imaging.

By Mary Henderson

Physics Tip

Each vendor currently implements dual-energy CT in a different way. This means that each vendor’s version will have advantages and disadvantages compared to its competitors.

North Hall Booth 6134

Empowering Patients and Partners in Care

RSNA 2022

Everything you need. All in one place.

Download the official RSNA 2022 meeting app today!
Sponsored by Hologic

RSNA 2022

DAILY BULLETIN • TUESDAY, NOVEMBER 29, 2022 | 5
RSNA 2022 award recipients were recognized at a special luncheon in their honor. From left to right, Gold Medalists, Vijay M. Rao, MD, James A. Brink, MD, and Katherine P. Andriole, PhD; RSNA President Bruce G. Haffty, MD; Ali Guermazi, MD, PhD, MSc, accepting the Margulis Award; Outstanding Educator Dennis M. Balfe, MD; Outstanding Researcher Maryellen Giger, PhD; and Honorary Members Evis Sala, MD, PhD, FRCR, FRCP, Michael Fuchsberger, MD, and Evelyn Lai Ming Ho, MBBS, MMed.

Co-moderator Erik England, MD, welcomes teams to the RSNA 2022 Resident Competition. This lively contest kicked off in the Discovery Theater where residency programs matched wits answering questions and identifying challenging diagnoses.

Trainees gather to relax and connect in the Residents Lounge.

Residents and trainees in the Residents Lounge enjoyed a fast-paced Kahoot! trivia game.

Ultimate bragging rights were earned Monday by residents from Albany Medical Center who are the RSNA 2022 Resident Competition winners. The winning team is pictured here with Erik England, MD, (far right) who co-moderated the competition.
RSNA Recognizes Honorary Members, Outstanding Educator and Outstanding Researcher

During RSNA 2022, RSNA presented awards for significant achievement in the field of radiology.

Honorary Members

Michael Fuchsänger, MD

An international authority on breast imaging and intervention techniques, Michael Fuchsänger, MD, is chair of the Department of Radiology at the Medical University of Graz, Austria, where he has also held professorship since 2012. Previously he served as chair of the Clinical Imaging Institute at Al Ain Hospital in Abu Dhabi, UAE.

Dr. Fuchsänger’s academic and clinical interest is primarily focused on breast radiology and intervention, including minimally invasive therapy as well as assessment of 4D blood flow and tissue characterization by cardiac MRI. He has published more than 100 peer-reviewed scientific manuscripts, held over 200 scientific lectures and poster presentations and presented more than 600 educational lectures worldwide.

Past president of the European Society of Radiology, Dr. Fuchsänger hosted the 2021 European Congress of Radiology as president and held various committee appointments since 2012. He is also the board member of the International Society for Strategic Studies in Radiology and has served as an executive board member of the European Society of Breast Imaging and as a board member of the Austrian Society of Senology and the Austrian Roentgen Society.

Dr. Fuchsänger’s many contributions to the field have been recognized with over 100 awards, including the Schering and Wolf-Dieter Sager awards of the Austrian Roentgen Society, Excellence in Imaging and Diagnostics from Arab Health and the Science Award by the city of Vienna honoring his body of scientific research. He received the Radiology Editor’s Recognition Award in 2011 and 2012. He holds honorary membership in the Israel Radiological Society.

Dr. Fuchsänger received his medical degree from the University of Vienna in Austria and completed his residency at the Medical University of Vienna’s Department of Radiology. He completed a post-doctoral research fellowship at the Department of Radiology at Memorial Sloan-Kettering Cancer Center in New York.

Evis Sala, MD, PhD, FRCR, FRCPC

A world-renowned cancer researcher, Evis Sala, MD, PhD, FRCR, FRCPC, has significantly advanced the field’s understanding of the molecular basis of cancer by demonstrating the phenotypic patterns which result from multiple genetic alterations that interact with the tumor microenvironment to drive the disease in several tumor types. Her contributions to cancer imaging span the development of functional imaging biomarkers to the creation of novel imaging-based virtual biopsy methods.

As a recognized mentor, educator and orator, Dr. Sala has three times earned the RSNA Honored Educator Award. Her leadership extends to the most important international bodies in the field. She is a fellow of the International Cancer Imaging Society, the International Society for Magnetic Resonance in Medicine, the European Society of Oncologic Radiology and the Royal College of Physicians, UK.

Dr. Sala serves as an associate editor of Cancer Research Communications and a senior consulting editor to Radiology: Artificial Intelligence.

After earning her medical degree at the University of Tirana Medical School in Albania, Dr. Sala earned a master’s and PhD in Medicine at the University of Cambridge. She completed fellowships at the World Health Organization in cancer research and cancer epidemiology.

Lai Ming Ho, MBBS, MMed

A passionate advocate for breast health and palliative care, Evelyn Lai Ming Ho, MBBS, MMed, believes the patient’s interests should always be at the core of medical care. Dr. Ho practices as a consultant in radiology at the University of Cambridge. She completed fellowships at the World Health Organization in cancer research and cancer epidemiology.

Evelyn Lai Ming Ho, MBBS, MMed

A passionate advocate for breast health and palliative care, Evelyn Lai Ming Ho, MBBS, MMed, believes the patient’s interests should always be at the core of medical care. Dr. Ho practices as a consultant in radiology at the University of Cambridge. She completed fellowships at the World Health Organization in cancer research and cancer epidemiology.

Dennis M. Balfé, MD

Revered educator Dennis M. Balfé, MD, has mentored countless radiologists during his tenure spanning four decades at Washington University School of Medicine’s Mallinckrodt Institute of Radiology in St. Louis.

Currently an emeritus professor of radiology at Mallinckrodt, Dr. Balfé began his career there as an instructor in radiology, became a tenured professor in 1992 and served as the radiology residency program director from 1992 to 2006.

A leader in organized radiology, Dr. Balfé is past president of the Society of Cardiovascular Magnetic Resonance Imaging (SCMR) and of the Society of Abdominal Radiology. He also served as chair of the American Board of Radiology Board of Trustees in 2004 and as an oral examiner.

Dr. Balfé was awarded the Residents’ Distinguished Teaching Award at Mallinckrodt in his students’ multiple academic award-winning tenure. He received the SABR Housestaff Award and American College of Radiology fellowship in 1994. Dr. Balfé was recognized by the Barnes Jewish Hospital with its lifetime achievement award, Distinguished Clinician, in 2016.

For two decades, Dr. Balfé served as associate editor for body imaging throughout his career. He received the SABR Housestaff Award and American College of Radiology fellowship in 1994. Dr. Balfé was recognized by the Barnes Jewish Hospital with its lifetime achievement award, Distinguished Clinician, in 2016.

For two decades, Dr. Balfé served as associate editor for body imaging throughout his career. He received the SABR Housestaff Award and American College of Radiology fellowship in 1994. Dr. Balfé was recognized by the Barnes Jewish Hospital with its lifetime achievement award, Distinguished Clinician, in 2016.

Outstanding Researcher Maryellen Giger, PhD

Esteemed researcher Maryellen Giger, PhD, has worked for decades on computer-aided diagnosis, machine learning, and deep learning in medical imaging.

Dr. Giger is the A.N. Pritzker Distinguished Service Professor of Radiology, the Committee on Medical Physics, and the College at the University of Chicago. She is also the vice-chair of radiology (basic science research) and the prior director of the Graduate Program in Medical Physics/character of the Committee on Medical Physics.

Her AI research in medical imaging risk assessment, diagnosis, prognosis and therapeutic response has yielded various translated components, and she has used these “virtual biopsies” in imaging-genomics association studies. She has extended her AI in medical imaging research to include the analysis of COVID-19 on CT and chest radiographs, and is the contact principal investigator on the National Institute of Biomedical Imaging and Bioengineering (NIBIB)-funded Medical Imaging and Data Resources Center (MIDRC; midrc.org).

Over the course of her career, Dr. Giger has published more than 260 peer-reviewed articles and obtained more than 30 patents. She has mentored over 100 trainees. She is cofounder of Quantitative Insights, now Qlarity Imaging, which produces Quantum, the first FDA-cleared, machine-learning driven CAD (computer-aided diagnosis) system. Dr. Giger is a former president of AAPM and of the International Society for Optics and Photonics (SPIE). She is a member of the NIH NIBIB Advisory Council and is editor-in-chief of the Journal of Medical Imaging.

Dr. Giger has been awarded the AAPM William D. Cockfield Gold Medal, the SPIE Director’s Award, and the SPIE Harrison B. Barron Award in Medical Imaging. She served as an RSNA third vice president and, in 2010, was elected to the National Academy of Engineering (NAE). She has also been recognized by the Society of Directors of Academic Medical Physics Programs Lifetime Achievement Award. She received the RSNA Honored Educator Award and is a fellow of the AAPM, the American Institute of Medical and Biomedical Engineering, Chinese Optical Society, IEEE, International Academy of Medical and Biological Engineering, and SPIE. In 2013, Giger was named by the International Congress on Medical Physics (ICMP) as one of the 50 medical physicists with the most impact on the field in the last 50 years.

Dr. Giger completed a master’s degree in physics at the University of Essex in England, and a PhD in medical physics at the University of Chicago.
Radiologists at the Center of Diagnosing and Treating Pregnancy-Associated Cancer

By Nick Klenske

Although rare, affecting about one in 1,000 pregnant women, the prevalence of pregnancy-associated cancer (PAC) is rising, a result of postponed childbearing and older maternal age at conception.

PAC is defined as any cancer detected during pregnancy and up to one year postpartum. The most common PACs are breast cancer, lymphoma, uterine cervical cancer, leukemia and ovarian cancer.

“Pregnancy-associated cancer is one of the most difficult and stressful clinical scenarios for the patient, her family and the medical team caring for them,” said Marcia Javitt, MD, an adjunct professor of radiology at the George Washington University Medical Center. “Imaging, clinical management and treatment require a carefully choreographed, multidisciplinary team approach.”

Dr. Javitt, who co-authored a recent RadioGraphics article on imaging cancer in pregnancy, made her remarks during a Monday session.

Weighing Fetal Risks With Maternal Benefits

Imaging and management of PAC requires weighing fetal risks with maternal benefits.

“The risk-benefit of every imaging modality, the strategies to balance the safety of the mother and fetus, and the support of the patient and family at every step are crucial,” Dr. Javitt said.

As Dr. Javitt explained, imaging modalities should be selected for safety and personalized care according to the primary cancer site, gestational age and tumor biology. As such, US and MRI are generally preferred imaging modalities due to their lack of ionizing radiation.

While in some cases imaging with ionizing radiation may be entertained after accounting for gestational age, Dr. Javitt cautioned that radiation dose concerns must be addressed in advance of these studies and reviewed after each examination. She also explained that abdominal shielding is usually not recommended during pregnancy because most of the dose to the uterus and fetus is from internal scatter.

However, studies such as mammography or radiography outside the abdominopelvic cavity may be performed selectively for urgent concerns as they have negligible exposure to the uterus and fetus.

Furthermore, CT ionizing radiation may be required for life-threatening conditions such as trauma or suspected pulmonary embolism during pregnancy.

“In general, intravenous iodinated contrast material should be avoided in pregnancy because the iodine content of contrast media has the potential to produce neonatal hypothyroidism,” Dr. Javitt said. “Gadolinium-based contrast material should also be avoided because of teratogenic effects seen in animal studies.”

Radiology Is Essential For Detecting Pregnancy-Associated Cancer

Cancer-related signs and symptoms of PAC are often masked by physiologic gestational challenges that can delay diagnosis. According to Dr. Javitt, this is problematic because early and accurate diagnosis has a direct impact on management decisions and treatment options such as surgery and chemotherapy.

“Radiology is essential for cancer detection, determining gestational age, image-guided biopsy, staging, monitoring treatment response and overseeing follow-up,” Dr. Javitt explained. “A multidisciplinary team, including the radiologist, should counsel the patient about safe and effective diagnostic testing followed by informed treatment selection for both the mother and fetus.”

Keeping Patients Informed

According to Dr. Javitt, a key takeaway is that radiologists play a central role in optimizing the treatment of pregnancy-related cancer.

“Radiology is essential for detection, determining gestational age, image-guided biopsy, staging, monitoring treatment response and overseeing follow-up,” Dr. Javitt explained. “A multidisciplinary team, including the radiologist, should counsel the patient about safe and effective diagnostic testing followed by informed treatment selection for both the mother and fetus.”

“Co-create the Future You Want to See

Build your expertise. Be a Member.

RSNA.org/Membership
AI Can Help Researchers Tap Into Decades Of Electronic Medical Records, But Challenges Remain

By Melissa Silverberg

AI has applications across the radiology spectrum, including the use of natural language processing algorithms to help collect and process data for clinical research. The power of the algorithm may be limited by the way electronic medical records are organized however, said Marta Flory, MD, clinical assistant professor at Stanford University, in her Monday presentation.

“Machine learning and AI improves quality in radiology by advancing understanding of disease processes, enabling analysis for ten years so there is a lot of data in the electronic medical record about cysts that were found and observed over a number of years. Researchers can use this data to see which did or did not turn into cancer.

“Our clinical question was, let’s use all this data we have stored electronically over 30 years and try to mine it and shed some insight into those pancreatic cysts so we know what features may predict future malignancy,” Dr. Flory explained.

The first step was to write a natural language processing algorithm to create a cohort of cases. The team had to choose words they thought radiologists would have chosen to describe the cysts or lesions and have the software to look at all reports for those words.

This step turned out to be more difficult and time consuming than Dr. Flory expected.

“The algorithm performed really well, but our real challenge was in how our data is actually stored,” she said.

The way things are coded and stored in the electronic medical record typically aligns with billing, not pathology. It was challenging to know how to find the right words without knowing all the right billing codes that might lead to a report that included what the team was looking to include.

“Using Natural Data Processing To Determine Which Cysts Turned Into Cancer

During the session, Dr. Flory discussed a research project she led to use natural language processing for evaluating pancreatic cysts, which can present normally, but may develop into cancer. Often, patients are observed with additional imaging for ten years so there is a lot of data in the electronic medical record about cysts that were found and observed over a number of years. Researchers can use this data to see which did or did not turn into cancer.

“Our clinical question was, let’s use all this data we have stored electronically over 30 years and try to mine it and shed some insight into those pancreatic cysts so we know what features may predict future malignancy,” Dr. Flory explained.

The first step was to write a natural language processing algorithm to create a cohort of cases. The team had to choose words they thought radiologists would have chosen to describe the cysts or lesions and have the software to look at all reports for those words.

This step turned out to be more difficult and time consuming than Dr. Flory expected.

“The algorithm performed really well, but our real challenge was in how our data is actually stored,” she said.

The way things are coded and stored in the electronic medical record typically aligns with billing, not pathology. It was challenging to know how to find the right words without knowing all the right billing codes that might lead to a report that included what the team was looking to include.

Tips For Researchers Looking at Data

She advised that research teams allow for more resources for cohort generation.

“As a clinical radiologist you are not that intimately familiar with the coding, and it is a very complicated system. It takes time and money,” Dr. Flory said.

“The codes can be different across different hospital systems. In a country with a national health care system, all the different hospitals are using the same codes, but that is not the case in the United States. There is a lot of variability that can make it difficult to translate this work from one institution to the next.”

Once the team had their cohort, they wrote another algorithm to look at the size of the largest cyst in the report and evaluate it over time.

“We found that the current recommendation for following pancreatic cysts is a little more aggressive than it needs to be,“ Dr. Flory said.

But even that question was a bit of a challenge as the AI algorithm was looking at the text of the report not the images so there was not a clear link labeling which lesion might have grown over time if there were multiple.

Templated reports and standardized decision can go a long way toward helping solve some of these research problems, but they need to be widely adopted to make a difference, Dr. Flory said.

“Natural language processing offers promise to be able to use electronic medical records to do research, there is a lot of data we can use, but researchers should also know about the limitations as well,” she concluded.

Visit RSNA.org/Bulletin to watch an interview with Dr. Flory.

International Prostate Cancer Challenge Studies Potential AI Solutions

By Melissa Silverberg

Prostate cancer detection through MRI is difficult and can be prone to reader variability among radiologists, but AI solutions are demonstrating the potential to assist, according to research presented at a Monday session.

Until recently, most existing studies on using AI for prostate cancer have suffered from having a small sample size or issues with their evaluation formats, said Anindo Saha, MSc, PhD candidate in the Department of Radiology, Nuclear Medicine and Anatomy at Radboud University Medical Center in the Netherlands, who presented, “Our clinical question was, let’s use all this data we have stored electronically over 30 years and try to mine it and shed some insight into those pancreatic cysts so we know what features may predict future malignancy.”

Using Natural Data Processing To Determine Which Cysts Turned Into Cancer

During the session, Dr. Flory discussed a research project she led to use natural language processing for evaluating pancreatic cysts, which can present normally, but may develop into cancer. Often, patients are observed with additional imaging for ten years so there is a lot of data in the electronic medical record about cysts that were found and observed over a number of years. Researchers can use this data to see which did or did not turn into cancer.

“Our clinical question was, let’s use all this data we have stored electronically over 30 years and try to mine it and shed some insight into those pancreatic cysts so we know what features may predict future malignancy,” Dr. Flory explained.

The first step was to write a natural language processing algorithm to create a cohort of cases. The team had to choose words they thought radiologists would have chosen to describe the cysts or lesions and have the software to look at all reports for those words.

This step turned out to be more difficult and time consuming than Dr. Flory expected.

“The algorithm performed really well, but our real challenge was in how our data is actually stored,” she said.

The way things are coded and stored in the electronic medical record typically aligns with billing, not pathology. It was challenging to know how to find the right words without knowing all the right billing codes that might lead to a report that included what the team was looking to include.

Tips For Researchers Looking at Data

She advised that research teams allow for more resources for cohort generation.

“As a clinical radiologist you are not that intimately familiar with the coding, and it is a very complicated system. It takes time and money,” Dr. Flory said.

“The codes can be different across different hospital systems. In a country with a national health care system, all the different hospitals are using the same codes, but that is not the case in the United States. There is a lot of variability that can make it difficult to translate this work from one institution to the next.”

Once the team had their cohort, they wrote another algorithm to look at the size of the largest cyst in the report and evaluate it over time.

“We found that the current recommendation for following pancreatic cysts is a little more aggressive than it needs to be,“ Dr. Flory said.

But even that question was a bit of a challenge as the AI algorithm was looking at the text of the report not the images so there was not a clear link labeling which lesion might have grown over time if there were multiple.

Templated reports and standardized decision can go a long way toward helping solve some of these research problems, but they need to be widely adopted to make a difference, Dr. Flory said.

“Natural language processing offers promise to be able to use electronic medical records to do research, there is a lot of data we can use, but researchers should also know about the limitations as well,” she concluded.

Visit RSNA.org/Bulletin to watch an interview with Dr. Flory.

Physics Quiz

A

[Question on page 4.]

b. Training for dictation software typically draws publicly available audio files with corresponding text such as audiobooks as part of its training set. In the USA, the preponderance of audio-books is narrated by men with minimal accents, so sampling mainly these audio files for training means the software is best at transcribing similar voices out of the box.
Academic Radiology Leaders Can Improve Teamwork By Partaking in Formal Leadership Training

By Mary Henderson

For those in charge of academic radiology departments, formal leadership training can have a tremendous organizational impact on wellness, especially in preventing burnout.

“Burnout is a syndrome that occurs in the workplace in which chronic stress cannot be successfully managed,” said lead researcher Jay Parikh, MD, professor of radiology at The University of Texas MD Anderson Cancer Center. As the radiology division’s wellness lead, preventing burnout is a passion for Dr. Parikh.

A worker meets the definition of burnout when he or she is emotionally exhausted, feels that their work is depersonalized or experiences a decreased level of personal accomplishment.

“In the AMA model, an increased workload is one of the six drivers of burnout,” Dr. Parikh noted in his poster presentation. “That’s certainly a reality for many radiology departments today.”

Burnout Felt Across All Radiology Subspecialties

Dr. Parikh identified six peer-reviewed journal articles published between 2017 and 2022 that report high rates of burnout within the field of radiology. Burnout rates for radiology subspecialties ranged from 49% to 88%, including:

- Musculoskeletal, 80.5%
- Neuroradiology, 49-75%
- Pediatric, 61-66%
- Cardi thoracic, 84-88%
- Breast Imaging, 78.4%
- Interventional Radiology, 71.9%

Dr. Parikh said burnout is critical because the syndrome has been associated with adverse outcomes for physicians, patient care, and the health care system.

“When physicians and staff are burnt out, patients may receive a lower level of care, experience longer recovery times and feel less satisfied. For physicians, burnout can result in depression, substance abuse, decreased productivity, and higher turnover rates that ultimately increase health care costs,” he said. “It’s estimated that the loss of just one physician has direct and indirect costs of $1 million,” he said.

Dr. Parikh worked with his university’s Leadership Institute to investigate whether providing the academic radiology leadership with formal training in leading wellness could improve burnout among the radiology faculty.

The university’s 178 radiology faculty members received a weblink to a survey in April 2021 with validated questions on professional fulfillment, values alignment, teamwork, overload and work-family conflict. In May 2021, 27 of the university’s 32 academic leaders participated in an instructor-led formal training on leading wellness focusing on five core skills—emotional intelligence, self-care, resilience support, demonstrating care and managing burnout.

A follow-up survey sent to the radiology faculty six months after the training showed a significant improvement in the aspect of teamwork. The results also demonstrated an inverse association between professional fulfillment and work exhaustion.

While Dr. Parikh and his team initially were hoping to notice some change in burnout rates, those scores did not statistically change following wellness training.

The formal training on leading wellness has been extended across the institution following the pilot.

“This is really encouraging and shows that if we design a formal wellness curriculum and engage leadership, we can make an impact on faculty,” Dr. Parikh said.

CONTINUED FROM PAGE 1

A Vision for the Future of Cancer Care

large,” he said. “You’ve set the way and you’ve done a real service to the entire community of physicians.”

As reflected in his Pulitzer Prize-winning book, The Emperor of All Maladies: A Biography of Cancer, Dr. Mukherjee has spent much of his career studying a disease that continues to kill millions worldwide every year. He expressed cautious optimism over recent developments that are driving a better understanding of the disease.

For instance, a tumor’s micro-environment is increasingly understood to be vital to its growth. The Cancer in a Dish project replicates this environment, allowing researchers to test different drugs on a 3D multicellular cancer—an approach that gives a more comprehensive picture than one provided by the cancer’s genome.

“We do genetic analysis for that particular cancer, but more than that, we integrate that information with the individual patient’s cancer and its sensitivities,” Dr. Mukherjee said.

A Different Model of Care

Summing up his talk, Dr. Mukherjee stressed the importance of clinical trials performed with correct endpoints.

“If we cheat now and perform clinical trials with the wrong endpoints, we will pay later, not only in terms of the costs but really in terms of interventions on patients,” he said.

“It’s estimated that the loss of just one physician has direct and indirect costs of $1 million.”

Jay Parikh, MD

The only way forward is to have a ‘with patient’ as opposed to a ‘for patient’ model of care.

Siddhartha Mukherjee, MD

In an informal question-and-answer session following the address, RSNA President Bruce G. Haffty, MD, asked Dr. Mukherjee what role the patient will play in the future of cancer care. In response, Dr. Mukherjee described the transformative power of bringing patients into the decision-making process. As an example, he described how discussions of concepts like risk models and false positive rates with prostate cancer patients assuages a patient’s fear and suspicion.

“The only way forward is to have a ‘with patient’ as opposed to a ‘for patient’ model of care,” he said.

Radiology’s prominent role in the continuum of cancer care was never far from the discussion. Dr. Mukherjee said he intends to devote a chapter to risk assessment and diagnostic radiology in an updated version of the The Emperor of All Maladies, due for publication next year.

“Treatment is the tip of the triangle and prevention is the base,” he said. “The people here,” he said, gesturing to the crowd, “occupy the center.”
Radiology departments are experiencing an ever-growing list of challenges, that can prevent smooth workflow and may ultimately affect patient care.

At RSNA 2022, **We Want to Help You Thrive** using the latest technology to improve productivity and efficiency.

Visit the Bayer Booth: 2519
Visit our AI Booth: 4729
Attend our live and virtual sessions
RSNA.Bayer.com
Where Passion and Innovation Collide

Transforming workflow with cost-effective, public cloud solutions that allow you to be more flexible, agile and scalable in deploying and managing your healthcare IT software, leading to better decisions, sooner.

Discover what’s possible at RSNA booth #2146